Semiparametric varying-coefficient study of mean residual life models
نویسندگان
چکیده
منابع مشابه
Generalized Varying-Coefficient Models
This paper deals with statistical inferences based on the generalized varying-coeÆcient models proposed by Hastie and Tibshirani (1993). Local polynomial regression techniques are used to estimate coeÆcient functions and the asymptotic normality of the resulting estimators is established. The standard error formulas for estimated coeÆcients are derived and are empirically tested. A goodness-oft...
متن کاملVarying Index Coefficient Models
It has been a long history of using interactions in regression analysis to investigate alterations in covariate-effects on response variables. In this article, we aim to address two kinds of new challenges arising from the inclusion of such high-order effects in the regression model for complex data. The first kind concerns a situation where interaction effects of individual covariates are weak...
متن کاملBayesian Semiparametric Regression for Median Residual Life
With survival data there is often interest not only in the survival time distribution but also in the residual survival time distribution. In fact, regression models to explain residual survival time might be desired. Building upon recent work of Kottas and Gelfand (2001) we formulate a semiparametric median residual life regression model induced by a semiparametric accelerated failure time reg...
متن کاملSemiparametric Estimation of Partially Linear Varying Coefficient Models with Time Trend and Nonstationary Regressors
This paper extends the partially linear varying coefficient model to contain time trend and nonstationary variables as regressors. We use the profile likelihood method to estimate both time trend coefficient in the linear component and the functional coefficients in the nonlinear component and establish their asymptotic distributions. Monte Carlo simulations are shown to investigate the finite ...
متن کاملSemiparametric Profile Likelihood Estimation of Varying Coefficient Models with Nonstationary Regressors
We study a partially linear varying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. The profile likelihood estimation methodology with the first-stage local polynom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2014
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2014.03.011